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In this paper an advancedmethod for the navigation system correction of a spacecraft using an error predictionmodel of the system
is proposed. Measuring complexes have been applied to determine the parameters of a spacecraft and the processing of signals
from multiple measurement systems is carried out. Under the condition of interference in flight, when the signals of external
system (such as GPS) disappear, the correction of navigation system in autonomous mode is considered to be performed using
an error prediction model. A modified Volterra neural network based on the self-organization algorithm is proposed in order to
build the prediction model, and the modification of algorithm indicates speeding up the neural network. Also, three approaches
for accelerating the neural network have been developed; two examples of the sequential and parallel implementation speed of
the system are presented by using the improved algorithm. In addition, simulation for a returning spacecraft to atmosphere is
performed to verify the effectiveness of the proposed algorithm for correction of navigation system.

1. Introduction

The autonomous navigation system of spacecraft can be
used to control the spacecraft without relying on ground-
based support and to determine the position, speed, and
altitude of spacecraft in real time bymeasurement equipment
aboard. The navigation system of spacecraft as a core for
space engineering mainly provides information in the stages
of its orbit entry, reentry, orbit change, and large altitude
maneuvers, significantly depending on the data processing
ability of the system algorithm [1, 2]. However, under some
certain circumstances with interferences out of measurement
systems, the correction of navigation system may not func-
tion in autonomous mode. And it is not possible to make
the state prediction of maneuvering object using a priori
mathematical models. In order to improve the performance
and reliability of equipment in satellite in flight, various
approaches have been studied including the development
of algorithmic method for the correction of navigation
system.Generally, the satellite navigation system is composed
of inertial navigation system (INS) and global positioning
system (GPS) receiver. When such a system operates, signals

from the space radio navigation system GPS may lose in
flight due to the effect of active and passive interference [3,
4]. It is difficult to use general mathematical approximation
functions to describe and predict the state of spacecraft. In
this case, compacted model of error prediction algorithms
which can reduce the computational costs is required to
develop for spacecraft in autonomous mode [5].

Neural networks consist of a large number of inter-
connected processing elements which are called neurons,
operating as microprocessors [6, 7]. Recently, several new
methods have been developed with the concept of neural
networks including prediction model [8–11]. For example,
an identification method for nonlinear dynamic systems
was proposed [12]. The feedforward neural network with
the structure of Volterra system possesses more adjustable
parameter than the original system to enhance the modeling
capacity [13, 14]. Bukharov O. E proposed a development
of decision support system based on neural networks and
a genetic algorithm. They have justified the use of general-
purpose computing on graphics processing units (GPGPU)
for decision support system [15] and developed a general
formulation of the prediction and estimation problems for
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a class of weakly structured problems using interval neural
networks and genetic algorithms. He showed two examples
of application of the developed system for solving urgent
problems [16]. In [17] a new structure of innovative decision
support systems (DSS) with advantages of using neural
networks to provide users precise prediction and optimal
decisions has been developed. The applying interval neu-
ral networks for calculations with interval data makes it
possible to use their DSS in a wide range of complicated
tasks.

Actually, the neural network has been applied to the
adaptive control of aircraft in recent years. WANG Qing
et al. proposed an antiwindup adaptive control method of
aircraft based on neural network and pseudocontrol hedging,
according to the unfitness flight control of conventional
adaptive control on an actuator with magnitude saturation
and rate saturation [18]. LIN Jian et al. studied a model
reference adaptive control based on improved BP neural net-
works together with dynamic inversion and neural networks,
which increases the efficiency of the adaptive algorithm and
achieves the anti-interference purpose [19]. In [20] amodel of
reference adaptive control based on BP network that transfer
function can optimize by itself has been put forward. Recent
research results show that neural networks are very effective
for modeling the complex nonlinear systems, especially those
which are hard to be described inmathematical form [21, 22].
However, when neural network is used to process a complex
system, it always takes a long time due to the requirement of
a large number of neurons to process [23]. In order to reduce
operation time of the neural network, it suggested using the
self-organization algorithm and parallel network algorithm
[24]. In this paper advanced algorithmic techniques are
proposed for correcting the autonomousnavigation systemof
spacecraft combined with neural networks; methods are pre-
sented instead of traditional algorithm for implementation
on-board of the dynamic object. AmodifiedVolterra network
structure is newly proposed specially in model building of
spacecraft, which could significantly accelerate the processing
efficiency of neural network and increase the navigation
precision.

The structure of this paper is presented as follows. An
algorithm of building a prediction model of compensation
for autonomous INS errors is developed in Section 2. A
method of amplitude-frequency search based on the basic
function is given in Section 3. Section 4 is concerned
with the modification of the Volterra neural network using
the method of self-organization, and a modified Volterra
network is presented.The last section discusses the computer
simulation results considering flight of a return spacecraft
and the finally conclusions are given.

2. Algorithm of Building a Prediction Model

2.1. Selection of the Reference Function. Generally, different
approaches to the prediction differ in terms of the amount
of a priori information necessary for the prediction about
the object under study. If considering an autonomous INS
functioning for a long period (more than 6 hours), it is not
available to correct INS from external devices and systems.
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Figure 1: Structure diagram of the INS with the application of APM
when external sensors are disconnected.

The main task to compensate for the errors of au-
tonomous INS using only internal information herein is
proposed. It also assumed that the autonomous operation
mode of INS proceeded the system operation period in the
correction mode of satellite system. Structure diagram of INS
considering the algorithm of building a prediction model
(APM) when external sensors are disconnected is shown in
Figure 1.

In addition, dynamic objects usually could move in space
by different trajectories to effectively perform the tasks. In
process of designing the control systems for dynamic objects
operating in an actively counteracting environment, as a rule,
it is possible not only to perform various maneuvers, but also
to control the basis of prediction of the object state.

In practical applications, predicting the state of the
maneuvering object by using a priori mathematical models
is not possible and reliable. When a dynamic object func-
tions under stochastic conditions, the amount of a priori
information about the object is usually minimal. Therefore,
it is advisable to use the self-organization approach for
extrapolation.

Self-organization algorithm allows building a mathemat-
ical model without a priori indication of the rules of the
object. The developer of the mathematical model should set
the ensemble of selection criteria (self-organization criteria)
of the model selection, then the mathematical model of
the optimal complexity is selected automatically. Further-
more, implementation of the self-organization algorithm is
assumed on board of the dynamic object. Typically, such
algorithms are presented fairly strict requirements for speed,
compactness, and ease of implementation in a computer.
These requirements are especially important when predicting
the state of highly maneuverable dynamic objects.

The principle of self-organization algorithm for models
is formulated as follows: with a gradual increase in the
complexity of models, the value of internal criteria (in the
presence of noise) decreases monotonically. Under the same
conditions, all values of external criteria pass through their
minima (extremums), making it possible to determine the
model with optimal complexity, which is unique for each
external criterion.

For self-organization method, the following three condi-
tions must be met:

(1) An initial organization (a set of support functions).

(2) Amechanism for random changes (mutations) of this
organization (a set of models-applicants).
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(3) A selection mechanism by which these mutations can
be evaluated in terms of their usefulness for improv-
ing the organization (self-organization algorithm).

To a large extent, success of the self-organization modeling
depends on the choice of reference functions class. If the
reference functions such as the structure of object cannot
be restored using a combination of particular models, then
the approximation problem is still solved; however, the result
is often suitable only for prediction, and not for object
identification, since it is not a physical model of the object.
But, the task of selecting a description is solvable if the
class of reference functions is chosen sufficiently general. The
available a priori information allows us to restrict a few types
of reference functions and the model structures derived from
them.

In the self-organization model, such reference functions
as power polynomials, trigonometric functions, and expo-
nential functions can be applied. If several types at the same
time are included in the system of reference functions, then
mixed functions containing the sum or product of power
polynomials and exponential functions can be obtained.

2.2. �e Selection Criteria for the Model. According to the
principle of Gödel external complement, it is necessary to
choose a criterion for the selection of model with optimal
complexity. In order to solve the problem, we need to divide
the data table into two parts A and B. Part A is a training
sample and part B is a test sample. Sometimes the table is also
divided into the third partC, an examination sample, which is
used to evaluate variousmodels, and itmay also serve to select
the optimal division into a training and verification sequence.
With such a partition, optimal models are selected from a set
of functions based on the training sequence, and one or two
better functions will be selected during the criterion test.

The following criteria are most commonly used.

(1) �e Criterion of MinimumDisplacement: Consistency. Ac-
cording to this criterion, evaluation of model is formulated
based on the data observed at a certain interval or at a certain
observation point; it should coincide as close as possible with
the model obtained from another observation interval or at
another observation point.

One of the criteria is as follows:

𝑛2𝑜𝑏 = 1𝑛 ∑
𝑡∈𝑁

(𝑦𝐴𝑡 − 𝑦𝐵𝑡)2 → min (1)

(2) �e Criterion of Regularity. The model of standard
deviation on the test sample is defined as

Δ2 (𝐵) = ∑𝑡∈𝑁 (𝑦𝑀𝑡 − 𝑦𝑡)2∑𝑡∈𝑁 𝑦2𝑡 → min (2)

If we assume that under a constant complex of conditions,
a good approximation in the past guarantees a good enough
approximation in the near future, then the regularity criterion
can be especially recommended for a short-term prediction,
since the solution obtained on the new implementation
method only produces a small deviation, and thus the

established model will be regular, i.e., insensitive to small
changes in the initial data. In this case, important variables
may be lost during the selection process, the influence of
which will be indirectly taken into account through other
variables.

(3) Balance Criteria. With a set of constant conditions and
in the absence of disturbances in structure of the object,
the laws (relations of characteristic variables) acting at the
observed time interval remain in the future. According to
this criterion, onemodel is chosen from all the ones obtained
at a certain time interval, and it is best corresponding to
the given regularity. Let 𝑓(𝑢1(𝑡), 𝑢2(𝑡), ..., 𝑢𝑠(𝑡)) = 0 be
balance functions (the associated variables 𝑢𝑖(𝑡), 𝑖 = 1 : 𝑠).
From the set of all prediction models for variables 𝑢𝑖(𝑡),
the model should be chosen for which this ratio is best
performed in the extrapolation interval. The imbalance of
variables can be defined as 𝑏𝑖 = 𝑓(𝑢1(𝑡𝑖), ..., 𝑢𝑠(𝑡𝑖)), where𝑡𝑖-moment at the prediction interval. The balance criterion
allows choosing the best prediction from possible trends
for each predictable process. In many cases, a function that
represents the relationship between variables is easy to learn
fromphysical representations. In other cases, the relationship
of variables can be determined by using group argument
algorithms.

(4) �e Criterion of Simplification. As a model of optimal
complexity, model with a smaller number of arguments is
chosen with a simple reference function. Simplification of the
self-organization algorithm can be carried out by reducing
the number of basis functions, cutting down the selection
by including in the ensemble of selection criteria, which is
composed of any criterion for the simplicity of model.

When themethod of self-organization is used, the predic-
tive model can be written as

Φ(𝑥) = 𝑁∑
𝑖=1

𝑎𝑖𝜇𝑛𝑖 (𝑓𝑖𝑥) (3)

where n is the number of basis functions in the model; 𝜇n are
basis functions from the parametrized set Fp. Fp={𝑎𝑖𝜇𝑖(𝑓𝑖𝑥) |𝑖 = 1, 𝐿}, a set of basis functions. Each basis function
is associated with a two-dimensional vector of parameters(𝑎, 𝑓)𝑇, where a is amplitude; f is frequency.

As a model of optimal complexity, the one with smaller
number of arguments is chosen with a simple reference
function.

Φ(𝑥, 𝑎) = 𝑁∑
𝑖=1

𝑎𝑖𝜇𝑖 (𝑥) (4)

where N-number of basic functions, 𝑎𝑖 ̸= 0.
The criterion is defined as

𝜏 (Φ) = 𝑁∑
𝑖=1

𝛿 (𝑎𝑖) , 𝜏 → min (5)

where 𝜏-criterion function.

𝛿 (𝑎𝑖) = {{{
1, 𝑎𝑖 > 𝜀
0, 𝑎𝑖 ≤ 𝜀 (6)
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where the 𝜀 tends to be infinitesimal (chosen according to the
actual situation).

The criterion ofmodel simplificationhelps to significantly
simplify the implementation of self-organization algorithm
in the special on-board calculator of spacecraft. To reduce
computational costs and obtain compact models in the
self-organization algorithm, an original criterion for model
simplification is included in the ensemble of selection criteria,
which tends to be a more compact model with similar values
from the ensemble of selection criteria. Using the constructed
nonlinear model, the state of the object (INS errors) is
predicted in the autonomous mode, i.e., in the absence of
measurements from external sources.

To predict the state of the object under study, a math-
ematical model that contains all the necessary information
about its parameters should be formed, and its state changes
during a given period of time. In particular, if we take a sensor
reading at certain (not necessarily equal) intervals, then the
measurement results can be written down as Ω={(𝑥𝑖, 𝑦𝑖) |𝑖 = 1, . . . , 𝑛}. The information presented in this way on the
change of one of the object parameters is represented a sample
(further assumes that, xi < xj when i<j, and x is considered as
certain analog time).

The essence of forecasting is to build a model (or select
from a set) that best meets the specified criteria and further
calculate its values at the points x>xn . Process of building such
a model can be formally divided into separated stages: the
first stage is to define the parameterized class of models, in
which the search is performed. Examples include methods
for finding one of functions belonging to a selected set and
depending on a certain parameter vector or the method of
sequential identification described below. Methods based on
building impulse reactions (weight functions) are also widely
used, and most of these methods widely apply the theory of
statistics and random process.

2.3. Identification of the Basis Function. Here we introduce
the criterion for identifying basis models:

𝐼𝑖 (𝑎, 𝑓) = 𝑛∑
𝑘=1

(𝑦𝑘 − 𝑎𝜇𝑖 (𝑓𝑥𝑘))2 (7)

where 𝜇i is a basis function of Fp and (yk, xk) ∈ Ω.
The identification of 1-st basis model is the process of

minimization of the criterion for identifying the 1-st basis
function in frequency and amplitude: min𝑎,𝑓𝐼𝑖(𝑎, 𝑓). Due to
the impossibility of direct application of gradient methods
(in most cases, functions have a large number of local
minima), they must be used in combination with the Monte
Carlo method [18], which greatly slows down the process. In
order to avoid the two-dimensional minimization, we have
limited the standard deviation. The expression for 𝐼𝑖(𝑎, 𝑓) is
a quadratic form with respect to the amplitude:

𝐼𝑖 (𝑎, 𝑓) = 𝑛∑
𝑘=1

(𝑦𝑘 − 𝑎𝜇𝑖 (𝑓𝑥𝑘))2

= 𝑛∑
𝑘=1

(𝑦2𝑘 − 2𝑦𝑘𝑎𝜇𝑖 (𝑓𝑥𝑘) + 𝑎2𝜇𝑖 (𝑓𝑥𝑘))
(8)

The square of the difference under the sum is differentiated
by a. At this point (𝐼𝑖)𝑎 = 0, it can be written down as follows:

𝑛∑
𝑘=1

(−2𝑦𝑘𝜇𝑖 (𝑓𝑥𝑘) + 2𝑎𝜇2𝑖 (𝑓𝑥𝑘)) = 0 (9)

And from the liner relationship with respect to a, we have

𝑎 = ∑𝑛𝑘=1 𝑦𝑘𝜇𝑖 (𝑓𝑥𝑘)∑𝑛𝑘=1 𝜇2𝑖 (𝑓𝑥𝑘) (10)

Equation (10) can be used to reduce the dimension of the
minimization region by the Monte Carlo method. The tests
performed showed that using (10) always found a deeper
minimum even with fewer points than with two-dimensional
minimization.

After the random search, an assumption is made that the
point found especially in a unimodal vicinity of the global
minimum, after which a clarification will be obtained by
gradientmethod.When solving the problemof identification,
a model of the form 𝑎 ⋅ 𝑔(𝑓 ⋅ 𝑥) is obtained. This could be
used to build one of the simplest method of approximation,
sequential identification. In the model building, all basic
functions are identified firstly, as the best one from criterion,
then, the difference (first remainder) of sample and model
values is calculated; later, the remainder is passed through
the identification algorithm again, the second remainder
is found, etc. This process should be continued until the
criterion value decreases.

It is also noticed that if the minimum value of criterion
had a linear function in the first step, then the further process
will no longer be able to change the overall process, while
a completely different situation is observed when applying
selective algorithms; for example, the curve obtained for
the same sample, using the proposed method, does not
have a dominant linear trend. Self-organization algorithms
are multirow algorithms based on the selection hypothesis,
which states that models do not pass the threshold of self-
selection (if the corresponding criterion is chosen optimally)
and do not get in the formation of best models in the next
row.

Assume that the first selection series consist of N basis
functions, each of which associates one parameter, its ampli-
tude. Power functions are used in order to obtain a polyno-
mial at the output of algorithm, and trigonometric functions
are the Fourier series.

In each new rowmodels are built as a linear combination
of two pair different models from the previous row and
constant. Thus, the combinations of the following type are
formed from N models 𝐶2𝑁:
𝑦𝑖 = 𝑎0,𝑗1 + 𝑎1,𝑗𝑔0,𝑗 (𝑥𝑖) + 𝑎2,𝑗𝑔1,𝑗 (𝑥𝑖) , 𝑗 = 1 . . . 𝐶2𝑁 (11)

If sumup all theseN equationswith respect to i, we can obtain
the system of so-called normalized Gauss equations:
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𝑁∑
𝑖=1

𝑦𝑖 = 𝑎0𝑁 + 𝑎1 𝑁∑
𝑖=1

𝑔0,𝑗 (𝑥𝑖) + 𝑎2 𝑁∑
𝑖=1

𝑔1,𝑗 (𝑥𝑖)
𝑁∑
𝑖=1

𝑦𝑖𝑔0,𝑗 (𝑥𝑖) = 𝑎0 𝑁∑
𝑖=1

𝑔0,𝑗 (𝑥𝑖) + 𝑎1 𝑁∑
𝑖=1

𝑔20,𝑗 (𝑥𝑖)
+ 𝑎2 𝑁∑
𝑖=1

𝑔0,𝑗 (𝑥𝑖) 𝑔1,𝑗 (𝑥𝑖)
𝑁∑
𝑖=1

𝑦𝑖𝑔1,𝑗 (𝑥𝑖) = 𝑎0 𝑁∑
𝑖=1

𝑔1,𝑗 (𝑥𝑖) + 𝑎1 𝑁∑
𝑖=1

𝑔0,𝑗 (𝑥𝑖) 𝑔1,𝑗 (𝑥𝑖)
+ 𝑎2 𝑁∑
𝑖=1

𝑔21,𝑗 (𝑥𝑖)

(12)

Since linear combinations of models are considered, we need
a free term in each equation due to the fact that it is better
to approximate on a given segment by a plane rather than a
subspace constructed as a linear extension of the set of basis
functions. If a constant is introduced in the basis, then the
free term in the equations can be discarded. Thus, we have to
search for two parameters for each pair of models.

𝑦𝑖 = 𝑎0,𝑗𝑔0,𝑗 (𝑥𝑖) + 𝑎1,𝑗𝑔1,𝑗 (𝑥𝑖) ,
𝑗 = 1 . . . 𝐶2𝑁

𝑁∑
𝑖=1

𝑦𝑖𝑔0,𝑗 (𝑥𝑖) = 𝑎0 𝑁∑
𝑖=1

𝑔20,𝑗 (𝑥𝑖) + 𝑎1 𝑁∑
𝑖=1

𝑔0,𝑗 (𝑥𝑖) 𝑔1,𝑗 (𝑥𝑖)
𝑁∑
𝑖=1

𝑦𝑖𝑔1,𝑗 (𝑥𝑖) = 𝑎0 𝑁∑
𝑖=1

𝑔0,𝑗 (𝑥𝑖) 𝑔1,𝑗 (𝑥𝑖) + 𝑎1 𝑁∑
𝑖=1

𝑔21,𝑗 (𝑥𝑖)

(13)

Calculations are stoppedwhen theminimum of the ensemble
of criteria is reached, and result is the best model in the last
row. Assume that there is a sample of N points; divide it into
two parts: A is the training part on which the models are built
and B is the verification sequence. The mean square error
calculated for the sequence B is not concluded in the model
building by the criterion of regularity.

Δ2 (𝐵) = ∑𝑁𝐵𝑖=1 (𝑦𝑖 − 𝑞𝑖)2∑𝑁𝐵𝑖=1 𝑦2𝑖 (14)

Here, yi is the sample values, and qi is the model values
computed at the point xi. A description of the methods for
dividing the original sample can be found. Suppose that 𝛼
is the extrapolation coefficient, A and B are two parts of the
input sequence, and the value is described by (15):

𝑛2𝑏 = ∑𝛼𝑁𝑖=1 (𝑞𝐴 − 𝑞𝐵)2𝛼∑𝑁𝐵𝑖=1 𝑦2𝑖 (15)

Accordingly, the criterion of minimum displacement is
described above, which helps selecting the least sensitive to
change in the input sample of the model. It allows solving
the problem of restoring the law using noisy data. The
convergence criterion of step-by-step integration of finite-
difference models is as follows:

𝐼 = ∑𝑁𝑖=1 (𝑞𝑖 − 𝑦𝑖)2∑𝑁𝑖=1 𝑦2𝑖 (16)

I is a step-by-step integration error in the interpolation
interval.

In practice, usually none of the above criteria is used,
but instead constitutes a so-called ensemble of criteria. In
many problems, ensembles of the following type have proved
themselves well: √𝐼2 + Δ2

√Δ2 + 𝑛2
𝑏

(17)

The greatest freedom of action provides the ensemble of the
form as

𝑤𝑖𝐼 + 𝑤ΔΔ2 + 𝑤𝑛𝑛2𝑏 (18)
where 𝜔𝛼 is the weight of the relevant criteria.

The application of this type of criteria selection allows
changing the weights of its individual components during
the operation of algorithm and performing corrections in the
process of work by levels.

3. Description of the Amplitude-Frequency
Search Method

The first step of the algorithm consists in identifying the
basis functions by the corresponding criterion (see (7)).
Further, based on the above discussed, each next level will be
composed of combinations of models by the previous level as
follows:

𝑎𝑛0𝜇𝑛0 (𝑓𝑛0𝑥) + 𝑎𝑛1𝜇𝑛1 (𝑓𝑛1𝑥) (19)

where n0, n1 are the model numbers from the previous level,
f n is frequency, a represents amplitude, and 𝜇 is the model
from the previous level.

It is obvious that there are four variables for each pair
model; thus, we need to solve the following problem in order
to find the final model:

min
𝑎0 ,𝑓0 ,𝑎1,𝑓1

𝐾(𝑎0,𝑗𝑔0,𝑗 (𝑓0,𝑗𝑥𝑖) + 𝑎1,𝑗𝑔1,𝑗 (𝑓0,𝑗𝑥𝑖)) (20)

where K is the value of the selection criterion. It is rather
difficult to carry out minimization by Monte Carlo method
in four-dimensional space.However, we couldwrite down the
analog of Gaussian system as follows:
𝑁∑
𝑖=1

𝑦𝑖𝜇𝑛0 (𝑓𝑛0𝑥𝑖) = 𝑎0 𝑁∑
𝑖=1

𝜇2𝑛0 (𝑓𝑛0𝑥𝑖)
+ 𝑎1 𝑁∑
𝑖=1

𝜇𝑛0 (𝑓𝑛0𝑥𝑖) 𝜇𝑛1 (𝑓𝑛1𝑥𝑖)
𝑁∑
𝑖=1

𝑦𝑖𝜇𝑛1 (𝑓𝑛1𝑥𝑖) = 𝑎0 𝑁∑
𝑖=1

𝜇𝑛0 (𝑓𝑛0𝑥𝑖) 𝜇𝑛1 (𝑓𝑛1𝑥𝑖)
+ 𝑎1 𝑁∑
𝑖=1

𝜇2𝑛1 (𝑓𝑛1𝑥𝑖)

(21)
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Now this system can be solved with respect to an, since they
are linearly in (21):

𝑎0 = ∑𝑁𝑖=1 𝜇2𝑛1 (𝑓𝑛1𝑥𝑖)∑𝑁𝑖=1 𝑦𝑖𝜇𝑛0 (𝑓𝑛0𝑥𝑖) − ∑𝑁𝑖=1 𝜇𝑛0 (𝑓𝑛0𝑥𝑖) 𝜇𝑛1 (𝑥𝑖𝑓𝑛1)∑𝑁𝑖=1 𝑦𝑖𝜇𝑛1 (𝑓𝑛1𝑥𝑖)∑𝑁𝑖=1 𝜇2𝑛0 (𝑓𝑛0𝑥𝑖)∑𝑁𝑖=1 𝜇2𝑛1 (𝑓𝑛1𝑥𝑖) − (∑𝑁𝑖=1 𝜇𝑛0 (𝑓𝑛0𝑥𝑖) 𝜇𝑛1 (𝑥𝑖𝑓𝑛1))2

𝑎1 = ∑𝑁𝑖=1 𝜇2𝑛0 (𝑓𝑛0𝑥𝑖)∑𝑁𝑖=1 𝑦𝑖𝜇𝑛1 (𝑓𝑛1𝑥𝑖) − ∑𝑁𝑖=1 𝜇𝑛0 (𝑓𝑛0𝑥𝑖) 𝜇𝑛1 (𝑥𝑖𝑓𝑛1)∑𝑁𝑖=1 𝑦𝑖𝜇𝑛0 (𝑓𝑛0𝑥𝑖)∑𝑁𝑖=1 𝜇2𝑛0 (𝑓𝑛0𝑥𝑖)∑𝑁𝑖=1 𝜇2𝑛1 (𝑓𝑛1𝑥𝑖) − (∑𝑁𝑖=1 𝜇𝑛0 (𝑓𝑛0𝑥𝑖) 𝜇𝑛1 (𝑥𝑖𝑓𝑛1))2
(22)

Based on these equations described above, we can mini-
mize in a two-dimensional frequency space. Thus, a certain
approximation to the required minimum point is obtained.
Assume that we are in a unimodal vicinity of the global
minimum, a clarification in the full four-dimensional space
of coefficients by the gradient method is carried out.

As a result, we obtain the coefficients for models of (19) so
that the standard deviation of the model from some sample
A is minimal. For each model, the value of the combined
selection criterion is calculated, and only those models that
have the lowest values of this criterion are passed to the
next level. The process continues until the minimum of the
selected ensemble of criteria is reached. The nonlinear self-
organization algorithm used to solve the prediction problem
demonstrated quite high accuracy.

4. Modification of the Volterra Neural
Network Using the Method of Self-
Organization

4.1. �e Volterra Network and Simulation Results. In this
section, an algorithm for building a dynamic object model is
developed, and it can adequately set the initial values of the
weight coefficients of a neural network, which significantly
accelerates the learning process of neural network. Mean-
while, the algorithm of optimization of Volterra network
structure is also considered.

The control of various dynamic objects usually involves
the use of their mathematical models. In this case, when the
model of a dynamic object is a priori unknown, it is necessary
to build by using a neural network. Neural networks allow
building models of investigated objects with a sufficiently
high accuracy, but they require a long time to implement
the learning process. When synthesizing control systems
for dynamic objects especially various aircraft, the time for
model building is limited. Therefore, the task of accelerating
the work of a neural network is extremely important.

The main task of building and training a neural network
in the case under study is approximation of a function. Based
on a training sample of input data and function values, it
requires to determine the weights of neural network, so that
the result of the network (value of the output function) on the
vector of input variables is as close as possible to the specified
function value (training value) for this vector.

In the process of implementing the neural network
training, the following procedures are performed in turn

for all input vectors: (1) The input vector values are passed
through the network; the result of the network operation is
found. (2) There is a deviation of the network result from
the initial value. (3)Theweights of connection of the links in
network elements from the last layers to the first are changed.
The change occurs in accordance with the gradient descent
method. The goal is to find the minimum error for each
element.

After that, the training condition for the end of algorithm
is checked, i.e., how the performance of the neural network
differs from the initial values. If the condition has not yet
been fulfilled, then the algorithm returns to the second step. If
the deviation from the original sample satisfies the conditions
specified in the algorithm a priori, then the neural network is
considered trained.

The method of self-organization is very similar to the
neural network, but it is not the same. The method of self-
organization determines the weights of connection using
Gaussian normalization, and for each combination of func-
tions a model of the form is constructed as

𝐹𝑖𝑚 = 𝑏0 + 𝑏1𝐹𝑖−1𝑘 + 𝑏2𝐹𝑖−1𝑙 (23)

where “i” is the step number of the algorithm and “k”, “l”, “m”
are the function indices inside the “i” and “i-1” step sets of the
algorithm, and the “k” index should not coincide with “l”.

In the transition from one step to the next, several best
models are selected (in accordance with the Gabor principle).
The combination continues as long as the error decreases
using the test sample. After the algorithm is completed, it
is required to go through all the steps of the algorithm in
the reverse order and determine the weights of the basis
functions.

𝐹 = �̂�0 + �̂�1𝐹1 + ⋅ ⋅ ⋅ + �̂�𝑁𝐹 (24)

where 𝐹 represents result function; 𝑏𝑖 is final coefficient for
the basis function; and 𝐹𝑖 is the basis function.

Thus, in fact, the method of self-organization with the
same structure as neural network is studied completely in
different way. The first one is based on Gauss normalization
method and the selection of best results, while the neural
network is based on the method of back propagation and
gradient descent method. The main disadvantage of neural
network is the random selection of initial values of the
weights, which leads to a long network training. From this
aspect, the main task was to combine the advantages of the



www.manaraa.com

Mathematical Problems in Engineering 7

xn−L xn−L+1 xn−L+2 xn−1 xn y

Figure 2: Input and output signals of Volterra network.

method of self-organization in the speed of work and the
neural network in building a model of better approximation.

It is proposed to first search for an approximateminimum
of error using the self-organization method, then to initialize
the neural network weights of connection with the obtained
values from self-organization method, and next, to find a
more accurate approximation by neural network training.
At the first stage, it is necessary to find a suitable network
structure, which could easily be compared with the method
of self-organization of all types of networks:

Φ𝑖 ̸= ∑
𝑘

Φ𝑖−1𝑘 𝑤𝑘 (25)

where Φ𝑖𝑗 denotes the function activation and 𝜔𝑘 is connec-
tion weigh.

In the case of applying a function to the sum of the
products of values of elements of the previous step on the
weights of connections, it becomes difficult to initialize the
weights of connections with values from the self-organization
method. Similarly, it is difficult to distribute the weights if a
chain of elements has several links with different weights.

As a result, the method of self-organization provides one
weight for each basis function; it is not possible to only divide
these weights into components. A type of neural network that
has a suitable structure for combination with the method of
self-organization is theVolterra network.This neural network
allows using the result of the method of self-organization as
a start point for learning a neural network. Accordingly, the
weights coefficients of a function can be defined in the form
as follows:

𝑦 = 𝐿∑
𝑖=0

𝑥𝑛−𝑖(𝑤𝑖
+ 𝐿∑
𝑗=0

𝑥𝑛−𝑗(𝑤𝑖𝑗 + 𝐿∑
𝑘=0

𝑥𝑛−𝑘 (𝑤𝑖𝑗𝑘 + . . .))) ,

or 𝑦 = 𝐿∑
𝑖=0

𝑥𝑛−𝑖𝑤𝑖 + 𝐿∑
𝑖=0

𝐿∑
𝑗=0

𝑥𝑛−𝑖𝑥𝑛−𝑗𝑤𝑖𝑗
+ 𝐿∑
𝑖=0

𝐿∑
𝑗=0

𝐿∑
𝑘=0

𝑥𝑛−𝑖𝑥𝑛−𝑗𝑥𝑛−𝑘𝑤𝑖𝑗𝑘 + ⋅ ⋅ ⋅

(26)

Figure 2 shows the input and output signals of Volterra
network. Here, x with indexes are the measuring signals,
and they are indicated as the input vectors for the neural
network; y is the output signal of the neural network; L+1 is
the dimension of the input vector.

If we expand the brackets in (26) and consider the
Volterra network, then it is noticed that various combinations
of products

𝑥𝑛−𝑖𝑥𝑛−𝑗𝑥𝑛−𝑘 . . . (27)

will duplicate each other; it is due to the fact that, in the case
under study, when the factors are rearranged, their product
does not change. For example,

. . . + 𝑤113𝑥1𝑥1𝑥3 + . . . + 𝑤131𝑥1𝑥3𝑥1 + . . .
+ 𝑤311𝑥3𝑥1𝑥1 + . . . (28)

where three terms of the expansion correspond to the same
basis function. In the theory of Volterra it is stipulated that in
such cases the corresponding weight coefficients “𝑤” should
be equal, which means

𝑤𝑖𝑗𝑘 = 𝑤𝑖𝑘𝑗 = 𝑤𝑗𝑖𝑘 = 𝑤𝑗𝑘𝑖 = 𝑤𝑘𝑖𝑗 = 𝑤𝑘𝑗𝑖 (29)

In order to speed up the operation of the algorithm and to
comply with the method of self-organization, it is necessary
to combine these duplicate members. As a result of the oper-
ation of a complete neural network, N identical coefficients
will be obtained with the same basis function. If we leave only
one term of the expansion in consideration, then, under the
same conditions, one coefficient is obtained, which has an
expression as follows:

𝑤(∗)
𝑖𝑗𝑘 = 𝑁𝑤𝑖𝑗𝑘 (30)

The exclusion from the structure of the neural network of
repeated basis functions allows greatly reducing the size of
network and consequently the whole amount of calculations.

Examples are given for the value L=2 (dimension of the
input vector is 3, as shown in Figure 3). In this case, the
number of input network elementswill be 3 + 9 + 27 = 39.And
when L = 5 (dimension of the input vector is 6), the number
of input elements of the full network reaches 6 + 36 + 216 +
1296 + 7776 + 46656 = 55986. It can be noticed that, even for
such a small order, the number of input elements has been
significant values.

To avoid repetition of the basis functions, the following
method is constructed: the product is ordered by the indices
of participating signals x; in such a case, the basis function
is not used more often than once. It is sufficient to generate
functions in accordance with a simple algorithm. Firstly, all
combinations for 0 are generated, then, the left ones without
participation 0, after that for 1, the left ones without 0, 1 and
for 2, etc. In Table 1 the rules for constructing nonrepeating
index combinations for the Volterra network are shown.

The table discloses combinations for L = 4 to the third
level. Here each basis function is applied only once. For such
a set of basic functions, it is possible to conduct initial training
by the method of self-organization.

Thus, in order to use the self-organization method to
accelerate the operation of the Volterra network, it is neces-
sary to select the basis functions in a special way. The basis
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Figure 3: Volterra’s neural network (for L = 2).

Table 1: Rules for constructing non-repeating combinations of indices for a Volterra network.

1 2 3
0 00 000
1 01;11 001
2 02;12;22 002
3 03;13;23;33 003

011;111
012;112
013;113

022;122;222
023;123;223

033;133;233;333

functions used in the method of self-organization should be
defined as follows:
1,
𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝐿
𝑥0𝑥0, 𝑥0𝑥1, 𝑥0𝑥2, . . . , 𝑥0𝑥𝐿, 𝑥1𝑥1, . . . , 𝑥1𝑥𝐿, 𝑥2𝑥2, . . . , 𝑥2𝑥𝐿,
. . . , 𝑥𝐿𝑥𝐿,

. . .
(31)

Such a set showed in (31) corresponds exactly to the set
of products of signals x from (26). Then, if each product
is used as a basis function in (24), then after the self-
organization method is completed, the weight coefficients
bi will be obtained, which need to be assigned to the
weight factors 𝑤 in the first step of the Volterra network
training. The correspondence of the pairs of coefficients

is determined, when creating the basic functions of self-
organizationmethod.And once the self-organizationmethod
is completed, the final coefficients are obtained already, it is
possible to determine the corresponding basis functions and
through them the weight coefficients of the Volterra network.

4.2. �e Modified Volterra Network and Simulation Results.
The structure of Volterra’s network without the use of repeti-
tive products is presented in Figure 4.

It should be noted that an additional element is intro-
duced into the network structure, a constant, since this does
not contradict the developed theory, at the same time, it gives
full correspondence with the method of self-organization.

This reduction of the network structure leads to a sharp
decrease in the number of input elements of the network. For
the case L = 5, the number of input elements will be equal to 6
+ 21 + 56 + 126 + 252 + 462 = 923, this is significantly less than
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Figure 4: The reduced Volterra network.

the full set of functions. In addition, the reduced network
does not require the complexity of the algorithm to control
the equality of weights of connections of the coincident basis
functions.

Based on the training sample with the help of a reduced
neural network, it was possible to build amathematicalmodel
(result of the network). It can be seen that, the accuracy of the
model built by a reduced neural network is almost identical
to the accuracy of the model made by an ordinary neural
network. However, the speed of reduced neural network is
significantly higher.

Thus, an algorithm for building a mathematical model
based on a neural network is developed. To accelerate its
work, it is proposed to determine the coefficients of the
network by the method of self-organization. The Volterra
neural network is represented and the reduced structure
of this network is developed. Reduced neural network
can significantly reduce the time to build a mathematical
model.

Another approach that speeds up the process of building a
model is parallelization of calculations in the implementation
of a neural network. The operation of each layer of the neural
network can be realized as a set of parallel threads in an
amount equals to the product of the number of neurons of
the current layer on the number of neurons of the previous
layer.

Similarly, the neural network can also be parallelized for
the error back propagation algorithm. The genetic algorithm
involves step-by-step development of generations, evaluation
of individuals of the current generation and the formation of
a new generation of the best individuals of the previous one.

In parallel, it is impossible to calculate the next generation
until the previous one is formed, but it is possible to work
in parallel with individuals of the same generation. Parallel
assessment of the quality of individuals of the current gener-
ation and the formation of the next generation of individuals
help reduce the time of each cycle and the algorithm as a
whole.

Considering that each network neuron can be calculated
independently of the other neurons of its layer, as well as
the fact that each individual neural network actively interacts
with its parameters (synaptic weights) [20], the following
parallelizationmethod has been developed and implemented:
in addition to simultaneous training of neural networks
of one generation, each network is parallelized by neurons
within a separate block.

The speed tests of the parallelized and sequential imple-
mentation of the system are performed; the results are shown
in Table 2. In the process of testing, the same sets of neural
networks of same structure are trained, using a sequential
and parallel version of the training algorithm. Each neural
network in the set contained 10 input, 15 hidden, and 2 output
neurons.

It can be seen from Table 2 that the sequential imple-
mentation of the algorithm increases the system operat-
ing time in proportion to the number of trained neural
networks. The increase time of system depending on the
number of networks for sequential calculations is more
than ten times greater than the same value for parallel
calculations, which verifies the effectiveness of the developed
method of parallelizing calculations and the feasibility of its
application.
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Table 2: Comparative characteristics of the speed of sequential and parallel implementation.

Type of calculation Number of networks Number of iteration Number of training cycles Work time

Sequential
1 10 1 000 0.51 s
2 10 1 000 1.07 s
3 10 1 000 1.66 s

Parallel
1 10 1 000 0.47 s
2 10 1 000 0.53 s
3 10 1 000 0.58 s

5. Verification of Algorithm for
INS Errors Correction

In this section, an example of application and simulations are
performed for well-knownmodels of INS errors, and the INS
is installed on a returning spacecraft to the atmosphere. As a
test model, a typical error model of the platform INS is used
in the following form:

𝛿V̇𝐸 = −𝑓𝐸 − V𝑢𝑝 (𝛿V𝐸𝑅 − 𝑢 sin 𝜑𝛿𝜑) + V𝑁 (𝛿V𝐸𝑅 tg𝜑
+ 𝑢 cos𝜑𝛿𝜑 + V𝐸𝑅 sec2𝜑𝛿𝜑) − 𝛿V𝑢𝑝 (2𝑢 cos𝜑
+ V𝐸𝑅 ) + 𝛿V𝑁 (2𝑢 sin 𝜑 + V𝐸𝑅 tg𝜑) − 𝑓𝑢𝑝 cosΦ𝐸
⋅ sinΦ𝑁 + 𝑓𝐸 cosΦ𝑁 cosΦ𝑢𝑝
+ 𝑓𝑁 (cosΦ𝑁 sinΦ𝑢𝑝 + sinΦ𝐸 sinΦ𝑁 cosΦ𝑢𝑝)
− sinΦ𝐸 sinΦ𝑁 sinΦ𝑢𝑝 + f𝐸𝜇𝐸 + 𝐵𝐸;

𝛿V̇𝑁 = −𝑓𝑁 − V𝑢𝑝
𝛿V𝑁𝑅 − V𝐸 (𝛿V𝐸𝑅 tg𝜑 + 𝑢 cos𝜑𝛿𝜑

+ V𝐸𝑅 sec2𝜑𝛿𝜑) − 𝛿V𝑢𝑝 V𝑁𝑅 − 𝛿V𝐸 (2𝑢 sin 𝜑
+ V𝐸𝑅 tg𝜑) + 𝑓𝑁 cosΦ𝐸 cosΦ𝑢𝑝 − 𝑓𝐸 cosΦ𝐸 sinΦ𝑢𝑝
+ 𝑓𝑢𝑝 sinΦ𝐸 + 𝑓𝑁𝜇𝑁 + 𝐵𝑁

Φ̇𝐸 = (−V𝑁𝑅 − 𝛿V𝑁𝑅 + 𝜔𝑑𝑟𝐸 ) cosΦ𝑁 + V𝑁𝑅 cosΦ𝑢𝑝
− (vE

R
+ u cos 𝜑) sinΦup + (vER tg𝜑 + u sin 𝜑

+ 𝛿vE
R

tg𝜑 + u cos 𝜑𝛿𝜑 + V𝐸𝑅 sec2𝜑𝛿𝜑 + 𝜔𝑑𝑟𝑢𝑝)
⋅ sinΦ𝑁;

Φ̇𝑁 = V𝐸𝑅 + 𝑢 cos 𝜑 + 𝛿V𝐸𝑅 − 𝑢 sin 𝜑𝛿𝜑 + 𝜔𝑑𝑟𝑁
− V𝑁 sinΦ𝑢𝑝𝑅 cosΦ𝐸 − (V𝐸𝑅 + 𝑢 cos𝜑) cosΦ𝑢𝑝

cosΦ𝐸 + (−
V𝑁𝑅

− 𝛿V𝑁𝑅 + 𝜔𝑑𝑟𝐸 ) tgΦ𝐸 sinΦ𝑁 − (V𝐸𝑅 tg𝜑 + 𝑢 sin 𝜑
+ 𝛿V𝐸𝑅 tg𝜑 + 𝑢 cos 𝜑𝛿𝜑 + V𝐸𝑅 sec2𝜑𝛿𝜑 + 𝜔𝑑𝑟𝑢𝑝) tgΦ𝐸
⋅ cosΦ𝑁

(32)

where V𝑁, V𝐸, V𝑢𝑝 are velocity projections of the spacecraft
on axis of the geographic trihedron, 𝛿V𝑁, 𝛿V𝐸, 𝛿V𝑢𝑝 are,
respectively, projections of errors in determining the velocity
of spacecraft on axis of a geographic trihedron, Φ𝑁, ΦE, Φup
denote the eviation angles between platform and geographic
trihedron,𝑓𝑁, 𝑓𝐸, 𝑓𝑢𝑝 are projections of apparent acceleration
of aircraft on axis of geographic trihedron, 𝜔dr

N , 𝜔dr
E , 𝜔dr

Up are
projections of the drift velocity of gyro-stabilized platform
on axis of geographic trihedron, 𝜇𝑁, 𝜇𝐸 represent coefficient
errors of accelerometer, 𝐵𝑁, 𝐵𝐸 represent zero offsets of
accelerometer, 𝜑 denotes local latitude, 𝛿𝜑 denotes latitude
error, 𝑢 is Earth rotation speed, and 𝑅 is Earth radius.

Then the error model of the northern channel of INS can
be written as

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1 (33)

where

𝑥𝑘 = [[[
[
𝛿v𝑁Φ𝐸𝜔dr
𝐸

]]]
]𝑘

;

𝐹 = [[[
[

1 𝑇𝑔 0
−𝑇𝑅 cosΦ𝑁 1 𝑇 cosΦ𝑁0 0 1 − 𝑇𝛽

]]]
]
;

𝑤𝑘 = [[[
[

𝑇𝐵𝑁0
𝑇𝐴√2𝛽𝑤

]]]
]𝑘

(34)

Here 𝑤 represents white noise, in the process of simulation
and it is assumed that only the error in determining the
velocity is obtained by measurement.

In Figure 5 the following notation is introduced: 1:
measurements of a real INS; 2: model built by the neural
network; 3: linear prior model; 4: nonlinear a priori model
(33).
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Figure 5: INS errors in determining velocity obtained with a real
INS and by various models.

It can be seen that Figure 5 demonstrates the need to
build a model of INS errors and the inexpediency of using
a priori models for the correction of INS due to their low
accuracy. In the process of modeling the reduced Volterra
neural network model was built on a limited time interval.
In practical applications, when correcting the INS from GPS,
the interval is usually 1 second. Figure 5 presents the results
of building a model for this time interval. The accuracy of the
model built by the reduced neural network averages 85% of
the nominal.

In Figure 6, 1 indicates the model of INS errors in
determining the velocity; 2 indicates model of the reduced
Volterra neural network, and in Figure 7, 1 indicates error
of INS in determining the velocity; 2 indicates model built
by Volterra’s neural network without time constraints. The
accuracy of building the model is on average 95% of the
nominal.

From the results of simulations, we notice that the
reduced Volterra network provides an acceleration of build-
ing models of a given accuracy, in comparison with the
Volterra neural network on average by 7-10%. The accuracy
of building a model in the correction interval averages 85%
of the nominal.

6. Conclusions

This paper presents an advanced algorithmic method for
increasing the accuracy of an INS of spacecraft. Three
approaches for speeding up the work of neural network
are suggested, which are extremely important in building
mathematical models of the INS correction system. And the
offline correction of INS is performed using the predictive
errormodel constructed by theVolterra neural networkmod-
ified by the self-organization algorithm. The modification of
algorithm is validated to speed up the work efficiency of the
neural network.

The accuracy of building a model using a reduced neural
network is practically the same as the model built by an
ordinary neural network. However, the speed of the reduced
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Figure 6: Angle of deviation of GPS from the plane of horizon and
the model built by reduced Volterra neural network.
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Figure 7: Angle of deviation of GPS from the plane of horizon and
the model built by Volterra neural network.

neural network is significantly higher compared to a conven-
tional neural network. In this paper an algorithm for building
a mathematical model based on a neural network has been
developed. To speed up its work, it is proposed to determine
the network coefficients by self-organization, a Volterra’s
neural network is also presented, and a reduced structure
of this network is developed. The reduced neural network
can significantly reduce the time of building a mathematical
model. Therefore, methods have been proposed to accelerate
the operation of a neural network, which affect the process of
mathematical models building of various dynamic objects, in
particular, the INS error model of spacecraft. The simulation
results show that the idea of combining neural network with
navigation algorithm is feasible and has a wide application
prospect, and the prospects for further research are related
to the development of algorithms for constructing models
with desired properties, for example, models with enhanced
characteristics of observability, identifiability, and sensitivity,
etc.
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